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The problem of proving generalization bounds for the performance of learning algorithms
can be formulated as a problem of bounding the bias and variance of estimators of the
expected error. We show how various stability assumptions can be employed for this
purpose. We provide a necessary and sufficient stability condition for bounding the bias
and variance for the Empirical Risk Minimization algorithm, and various sufficient con-
ditions for bounding bias and variance of estimators for general algorithms. We discuss
settings in which it is possible to obtain exponential bounds, and we prove an extension
of the bounded-difference inequality for “almost always” stable algorithms.
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1. Introduction

One of the central problems of Statistical Learning Theory is to quantify the general-
ization ability of learning algorithms within a probabilistic framework. The standard
setting for the problem is the following. Let F be a class of real-valued functions on
a space X , mapping X into Y ⊂ R. Denote by µ an unknown probability measure
on Z = X ×Y. An algorithm A is a mapping A : Zn �→ F , n ∈ Z

+. In plain words,
a learning algorithm observes n input-output pairs and produces (learns) a function
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which describes well the underlying input-output process. Throughout this article,
we will focus on symmetric algorithms, i.e. A(z1, . . . , zn) = A(π(z1, . . . , zn)) for any
permutation π ∈ Sn, the symmetric group.

Let A(z1, . . . , zn; x) denote the evaluation of the function A(z1, . . . , zn) at a
point x. To measure the quality of A(z1, . . . , zn), a loss function � : F ×Z �→ [0, M ]
is introduced, such that �(A(z1, . . . , zn); z) is a measure of how well A(z1, . . . , zn)
predicts y at point x, where (x, y) = z ∈ Z. The function � is often taken to be the
square loss.

If the algorithm A is clear from the context, we will write �(z1, . . . , zn; z) instead
of �(A(z1, . . . , zn); z). The functions �(f ; ·) are called the loss functions and the class
L(F) = {�(f ; ·) : f ∈ F} is called the loss class.

The main quantity of interest is the expected error of the function A(z1, . . . , zn),

Iexp(z1, . . . , zn) := Ez∼µ[�(z1, . . . , zn; z)] =
∫
Z

�(z1, . . . , zn; z) dµ(z).

This quantity measures the accuracy of A(z1, . . . , zn) on the unseen data z drawn
from µ. Unfortunately, the measure µ is unknown and this quantity cannot be
computed. The key assumption made in the Statistical Learning Theory is that
the observed sample z1, . . . , zn is independent and identically distributed (i.i.d.)
with the generating distribution µ. The problem thus is to estimate Iexp(z1, . . . , zn)
based on the finite sample z1, . . . , zn.

Although the expected error is unknown, several important quantities can be
computed from the sample. The first one is the empirical error (or resubstitution
estimate),

Iemp(z1, . . . , zn) :=
1
n

n∑
i=1

�(z1, . . . , zn; zi).

The second one is the leave-one-out error (or deleted estimate),a

Iloo(z1, . . . , zn) :=
1
n

n∑
i=1

�(z1, . . . , zi−1, zi+1, . . . , zn; zi).

These quantities are employed to estimate the expected error, and the Statistical
Learning Theory is concerned with providing bounds on the deviations of these
estimates from the expected error. Denote these deviations

Ψn(z1, . . . , zn) := Iexp(z1, . . . , zn) − Iemp(z1, . . . , zn),

Φn(z1, . . . , zn) := Iexp(z1, . . . , zn) − Iloo(z1, . . . , zn).

If one can show that Ψn (or Φn) is “small”, then the empirical error (resp. leave-one-
out error) is a good proxy for the expected error. In particular, we are interested in

aIt is understood that the first term in the sum is �(z2, . . . , zn; z1) and the last term is
�(z1, . . . , zn−1; zn).
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the rate of the convergence of Ψn and Φn to zero as n increases. Such statements,
of course, have to be made in probability.

Let us first focus on the random variable Ψn(z1, . . . , zn). Recall that the Central
Limit Theorem (CLT) guarantees that the average of n i.i.d. random variables con-
verges to their mean (under the assumption of finiteness of second moment). Unfor-
tunately, the random variables �(z1, . . . , zn; z1), . . . , �(z1, . . . , zn; zn) are dependent,
and the CLT is not applicable. In fact, the interdependence of these random vari-
ables makes the resubstitution estimate positively biased, as the next example shows.

Example 1.1. Let X = [0, 1], Y = {0, 1}, µ(x) = U [0, 1], µ(y|x) = δy=1, �(y, y′) =
|y−y′|, and A is defined as A(z1, . . . , zn; x) = 1 if x ∈ {x1, . . . , xn} and 0 otherwise.
In other words, the algorithm observes n data points (x, 1), where x is distributed
uniformly on [0, 1], and generates a hypothesis which fits exactly the observed data,
but outputs 0 for unseen points x. The empirical error of A is 0, while the expected
error is 1, i.e. Ψn(z1, . . . , zn) = 1 for any z1, . . . , zn.

The algorithm in Example 1.1 is the Empirical Risk Minimization (ERM)
algorithm

A(z1, . . . , zn) = argmin
f∈F

1
n

n∑
i=1

�(f ; zi).

In the above example, the function class F =
⋃

n≥1{fx : x = (x1, . . . , xn) ∈ [0, 1]n}
where fx(x) = 1 if x = xi for some 1 ≤ i ≤ n and fx(x) = 0 otherwise.

Though an exact minimizer of empirical risk might not exist, an almost-
minimizer always exists. The results of this paper hold for almost-minimizers, but,
for the sake of clarity, we consider exact minimization.

Minimizing the empirical error is a natural idea, as long as guarantees on small-
ness of Ψn(z1, . . . , zn) can be made. Note that no such guarantee can be made in
Example 1.1. Intuitively, this is due to the fact that the algorithm can fit any data,
i.e. the space of functions L(F) is too large. Indeed, convergence of empirical errors
to the expected errors is completely characterized by the “size” of L(F). Such a
characterization disregards the algorithm A, and only focuses on the loss function
� and the class F , from which the functions are chosen. The class L(F) is called
uniform Glivenko–Cantelli if for every ε > 0,

lim
n→∞ sup

µ
P

(
sup

�∈L(F)

∣∣∣∣E� − 1
n

n∑
i=1

�(zi)
∣∣∣∣ ≥ ε

)
= 0,

where z1, . . . , zn are i.i.d. random variables distributed according to µ.
Non-asymptotic results of the form

P

(
sup

�∈L(F)

∣∣∣∣E� − 1
n

n∑
i=1

�(zi)
∣∣∣∣ ≥ ε

)
≤ δ(ε, n,L(F))

give uniform (over class L(F)) rates of convergence of empirical means to the
expected means. Since the guarantee is given for all functions in the class, the
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defect Ψn(z1, . . . , zn) is bounded by ε with probability 1− δ(ε, n,L(F)), no matter
what the algorithm is.

Albeit interesting from the theoretical point of view, the uniform bounds are in
general loose, as they are “worst case” over all functions in the class. As an extreme
example, consider the algorithm that always ouputs the same function (the constant
algorithm)

A(z1, . . . , zn) = f0, ∀ (z1, . . . , zn) ∈ Zn.

The bound on Ψn(z1, . . . , zn) follows from the CLT and an analysis based upon the
complexity of a class F does not make sense. Recent advances in the Statistical
Learning Theory shift the focus from uniform bounds to non-uniform bounds of
the form

P(|Ψn(z1, . . . , zn)| > ε) < δ(ε, n,A), (1.1)

or

P(|Ψn(z1, . . . , zn)| > ε(δ, n,A, z1, . . . , zn)) < δ,

where in the last bound ε depends on the sample. In this article, we will focus on the
bounds of type (1.1). The goal is to derive bounds on Ψn (or Φn) such that
limn→∞ δ(ε, n,A) = 0 for any fixed ε > 0. If the rate of decrease of δ(ε, n,A) is
not important, we will write |Ψn| P→ 0 and |Φn| P→ 0.

Notice that Ψn and Φn are bounded random variables, as the loss function
� ⊂ [0, M ]. By Markov’s inequality,

∀ ε ≥ 0, P(|Ψn| ≥ ε) ≤ E|Ψn|
ε

and also,

∀ ε′ ≥ 0, E|Ψn| ≤ MP(|Ψn| ≥ ε′) + ε′.

Therefore, showing |Ψn| P→ 0 is equivalent to showing E|Ψn| → 0. The latter is
equivalent to EΨ2

n → 0 since |Ψn| ≤ M . Further, notice that EΨ2
n = var(Ψn) +

(EΨn)2. We will call EΨn the bias, var(Ψn) the variance, and EΨ2
n the second

moment of Ψn. The same derivations and terminology hold for Φn.
We have shown that studying conditions for convergence in probability of the

estimators to zero is equivalent to studying their mean and variance (or the second
moment alone).

In this paper, we consider various stability conditions which allow one to bound
bias and variance or the second moment, and thus imply convergence of Ψn and
Φn to zero in probability. Though the reader should expect a number of definitions
of stability, the common flavor of these notions is the comparison of the “behavior”
of the algorithm A on similar samples. We hope that the present work sheds light
on the important stability aspects of algorithms, suggesting principles for designing
predictive learning systems.
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We now sketch the organization of this paper. In Sec. 2, we motivate the use of
stability and give some historical background. In Sec. 3, we show how bias (Sec. 3.1)
and variance (Sec. 3.2) can be bounded by various stability quantities. Sometimes
it is mathematically more convenient to bound the second moment instead of bias
and variance, and this is done in Sec. 4. In particular, Sec. 4.1 deals with the sec-
ond moment EΦ2

n in the spirit of [4], while in Secs. 4.3 and 4.2, we bound EΨ2
n in

the spirit of [10] and [2], respectively. The goal of Secs. 4.1 and 4.2 is to re-derive
some known results in a simple manner that allows one to compare the proofs side
by side. The results of these sections hold for general algorithms. Furthermore,
for specific algorithms the results can be improved, i.e. simpler quantities might
govern the convergence of the estimators to zero. To illustrate this, in Sec. 4.4 we
prove that for the Empirical Risk Minimization algorithm, a bound on the bias
EΨn implies a bound on the second moment EΨ2

n. We therefore provide a simple
necessary and sufficient condition for consistency of ERM. If rates of convergence
are of importance, rather than using Markov’s inequality, one can make use of more
sophisticated concentration inequalities with a cost of requiring more stringent sta-
bility conditions. In Sec. 5, we discuss the most rigid stability, Uniform Stability,
and provide exponential bounds in the spirit of [2]. In Sec. 5.2, we consider less rigid
notions of stability and prove exponential inequalities based on powerful moment
inequalities of [1]. Finally, Sec. 6 summarizes the paper and discusses further direc-
tions and open questions.

2. Historical Remarks and Motivation

Devroye, Rogers and Wagner (see, e.g., [4]) were the first, to our knowledge, to
observe that sensitivity of the algorithms with regard to small changes in the sam-
ple is related to the behavior of the leave-one-out estimate. The authors were able to
obtain results for the k-Nearest-Neighbor algorithm, where VC theory fails because
of large class of potential hypotheses. These results were further extended for k-local
algorithms and for potential learning rules. Kearns and Ron [6] later discovered a
connection between finite VC-dimension and stability. Bousquet and Elisseeff [2]
showed that a large class of learning algorithms, based on Tikhonov Regulariza-
tion, is stable in a very strong sense, which allowed the authors to obtain expo-
nential bounds without much work. Kutin and Niyogi [8] introduced a number of
notions of stability and showed implications between them. The authors emphasized
the importance of “almost-everywhere” stability and proved valuable extensions of
McDiarmid’s exponential inequality [7]. Mukherjee et al. [10] proved that a com-
bination of three stability notions is sufficient to bound the difference between the
empirical estimate and the expected error, while for Empirical Risk Minimization
these notions are necessary and sufficient. The latter result showed an alternative to
VC theory condition for consistency of Empirical Risk Minimization. In this paper,
we prove, in a unified framework, some of the important results mentioned above,
as well as show new ways of incorporating stability notions in the Learning Theory.
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We now give some intuition for using algorithmic stability. First, note that
without any assumptions on the algorithm, nothing can be said about the mean
and the variance of Ψn. One can easily come up with settings when the mean is
converging to zero, but not the variance, or vice versa (e.g., Example 1.1), or both
quantities diverge from zero.

The assumptions of this paper that allow us to bound the mean and the vari-
ance of Ψn and Φn are loosely termed as stability assumptions. Recall that if the
algorithm is a constant algorithm, Ψn is bounded by the Central Limit Theorem.
Of course, this is an extreme and the most “stable” case. It turns out that the
“constancy” assumption on the algorithm can be relaxed while still achieving tight
bounds. A central notion here is that of Uniform Stability [2]:

Definition 2.1. Uniform Stability β∞(n) of an algorithm A is

β∞(n) := sup
z1,...,zn,z∈Z,x∈X

|A(z1, . . . , zn; x) −A(z, z2, . . . , zn; x)|.

Intuitively, if β∞(n) → 0, the algorithm resembles more and more the constant
algorithm when considered on similar samples (although it can produce distant
functions on different samples). It can be shown that some well-known algorithms
possess Uniform Stability with a certain rate on β∞(n) (see [2] and Sec. 5.1).

In the following sections, we will show how the bias and variance (or second
moment) can be upper-bounded or decomposed in terms of quantities over “similar”
samples. The advantage of this approach is that it allows one to check “stability” for
a specific algorithm and derive generalization bounds without much further work.
For instance, it is easy to show that k-Nearest Neighbors algorithm is L1-stable and
a generalization bound follows immediately (see Sec. 4.1).

3. Bounding Bias and Variance

3.1. Decomposing the bias

The bias of the resubstitution estimate and the deleted estimate can be written as
quantities over similar samples:

EΨn = E

[
1
n

n∑
i=1

[
Ez�(z1, . . . , zn; z)− �(z1, . . . , zn; zi)

]]

= E[�(z1, . . . , zn; z) − �(z1, . . . , zn; z1)]

= E[�(z, z2, . . . , zn; z1) − �(z1, . . . , zn; z1)].

The first equality above follows because E�(z1, . . . , zn; zk) = E�(z1, . . . , zn; zm)
for any k, m. The second equality holds by noticing that E�(z1, . . . , zn; z) =
E�(z, z2, . . . , zn; z1) because the roles of z and z1 can be switched. We will employ
this trick many times in the later proofs, and for convenience, we shall denote this
“renaming” process by z ↔ z1.

Let us inspect the quantity E[�(z, z2, . . . , zn; z1) − �(z1, . . . , zn; z1)]. It is the
average difference between the loss at a point z1 when it is not present in the
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learning sample (out-of-sample) and the loss at z1 when it is present in the n-tuple
(in-sample). Hence, the bias EΨn will decrease if and only if the average behavior
on in-sample and out-of-sample points is becoming more and more similar. This is
a stability property and we will give a name to it:

Definition 3.1. Average Stability βbias(n) of an algorithm A is

βbias(n) := E[�(z, z2, . . . , zn; z1) − �(z1, . . . , zn; z1)].

We now turn to the deleted estimate. The bias EΦn can be written as

EΦn = E

[
1
n

n∑
i=1

(Ez�(z1, . . . , zn; z) − �(z1, . . . , zi−1, zi+1, . . . , zn; zi))

]

= E[�(z1, . . . , zn; z) − �(z2, . . . , zn; z1)]

= E[Iexp(z1, . . . , zn) − Iexp(z2, . . . , zn)].

We will not give a name to this quantity, as it will not be used explicitly later. One
can see that the bias of the deleted estimate should be small for reasonable algo-
rithms. Unfortunately, the variance of the deleted estimate is large in general (see,
e.g., [5, p. 415]). The opposite is believed to be true for the resubstitution estimate.
We refer the reader to [5, Chaps. 23, 24 and 31] for more information. Surprisingly,
we will show in Sec. 4.4 that for Empirical Risk Minimization algorithms, if one
shows that the bias of the resubstitution estimate decreases, one also obtains that
the variance decreases.

3.2. Bounding the variance

Having shown a decomposition of the bias of Ψn and Φn in terms of stability
conditions, we now show a simple way to bound the variance in terms of quantities
over “similar” samples.

Theorem 3.2 (Efron–Stein). Let ξ : Zn �→ R be a measurable function of
n variables and define Γ = ξ(z1, . . . , zn) and Γ′

i = ξ(z1, . . . , z
′
i, . . . , zn), where

z1, . . . , zn, z′1, . . . , z
′
n are i.i.d. random variables. Then

var(Γ) ≤ 1
2

n∑
i=1

E
[
(Γ − Γ′

i)
2
]
. (3.1)

A “removal” version of the above is the following:

Theorem 3.3 (Efron–Stein). Let ξ : Zn �→ R be a measurable function of n

variables and ξ′ : Zn−1 �→ R of n − 1 variables. Define Γ = ξ(z1, . . . , zn) and
Γi = ξ′(z1, . . . , zi−1, zi+1, . . . , zn), where z1, . . . , zn are i.i.d. random variables. Then

var(Γ) ≤
n∑

i=1

E
[
(Γ − Γi)2

]
. (3.2)
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The idea of the proofs of the above result is based on the fact that var(Γ) ≤
E(Γ − c)2 for any constant c, and so

vari(Γ) = Ezi(Γ − EziΓ)2 ≤ Ezi(Γ − Γi)2.

Thus, we artificially introduce a quantity over a “similar” sample to upper-bound
the variance. If the increments Γ − Γi and Γ − Γ′

i are small, the variance is small.
When applied to the function Ψn(z1, . . . , zn), this translates exactly into controlling
the behavior of A on similar samples:

var(Ψn) ≤ nE(Ψn(z1, . . . , zn) − Ψn(z2, . . . , zn))2

≤ 2nE(Iexp(z1, . . . , zn) − Iexp(z2, . . . , zn))2

+ 2nE(Iemp(z2, . . . , zn) − Iemp(z1, . . . , zn))2.

Here we used the fact that the algorithm is invariant under permutation of coordi-
nates, and therefore all the terms in the sum of (3.2) are equal. This symmetry will
be exploited to a great extent in the later sections. Note that similar results can be
obtained using the “replacement” version of Efron–Stein’s bound.

The meaning of the above bound is that if the mean square of the difference
between expected errors of functions, learned from samples differing in one point,
is decreasing faster than n−1, and if the same holds for the empirical errors, then
the variance of the resubstitution estimate is decreasing. Let us give names to the
above quantities.

Definition 3.4. Empirical-Error (Removal) Stability of an algorithm A is

β2
emp(n) := E|Iemp(z1, . . . , zn) − Iemp(z1, . . . , zi−1, zi+1, . . . , zn)|2.

Definition 3.5. Expected-Error (Removal) Stability of an algorithm A is

β2
exp(n) := E|Iexp(z1, . . . , zn) − Iexp(z1, . . . , zi−1, zi+1, . . . , zn)|2.

With the above definitions, the following theorem follows:

Theorem 3.6.

var(Ψn) ≤ 2n
(
β2

exp(n) + β2
emp(n)

)
.

The following example shows that the ERM algorithm is always Empirical-Error
Stable with βemp(n) ≤ M(n − 1)−1. We deduce that Ψn

P→ 0 for ERM whenever
βexp = o(n−1/2). As we will show in Sec. 4.4, the decay of the Average Stability,

βbias(n) = o(1), is both necessary and sufficient for Ψn
P→ 0 for ERM.
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Example 3.7. For an Empirical Risk Minimization algorithm, βemp(n) ≤ M
n−1 :

Iemp(z2, . . . , zn) − Iemp(z1, . . . , zn)

≤ 1
n − 1

n∑
i=2

�(z2, . . . , zn; zi) − 1
n − 1

n∑
i=1

�(z1, . . . , zn; zi) +
M

n − 1

≤ 1
n − 1

n∑
i=2

�(z2, . . . , zn; zi) − 1
n − 1

n∑
i=2

�(z1, . . . , zn; zi)

+
M

n − 1
− 1

n − 1
�(z1, . . . , zn; z1) ≤ M

n − 1

and the other direction is proved similarly.

We will show in the following sections that a direct study of the second moment
leads to better bounds. For the bound on the variance in Theorem 3.6 to decrease,
βexp and βemp have to be o(n−1/2). With an additional assumption, we will be able
to remove the factor n by upper-bounding the second moment and by exploiting
the structure of the random variables Φn and Ψn.

4. Bounding the 2nd Moment

Instead of bounding the mean and variance of the estimators, we can bound the
second moment. The reason for doing so is for mathematical convenience and is
due to the following straightforward bounds on the second moment:

EΨ2
n = E[Ez�(z1, . . . , zn; z)]2 − E

[
Ez�(z1, . . . , zn; z)

1
n

n∑
i=1

�(z1, . . . , zn; zi)

]

+ E

[
1
n

n∑
i=1

�(z1, . . . , zn; zi)

]2

− E

[
Ez�(z1, . . . , zn; z)

1
n

n∑
i=1

�(z1, . . . , zn; zi)

]

≤ E[Ez�(z1, . . . , zn; z)Ez′�(z1, . . . , zn; z′) − Ez�(z1, . . . , zn; z)�(z1, . . . , zn; z1)]

+ E[�(z1, . . . , zn; z1)�(z1, . . . , zn; z2) − Ez�(z1, . . . , zn; z)�(z1, . . . , zn; z1)]

+
1
n

E�(z1, . . . , zn; z1)2,

and the last term is bounded by M2

n . Similarly,

EΦ2
n ≤ E[Ez�(z1, . . . , zn; z)Ez′�(z1, . . . , zn; z′) − Ez�(z1, . . . , zn; z)�(z2, . . . , zn; z1)]

+ E[�(z2, . . . , zn; z1)�(z1, z3, . . . , zn; z2) − Ez�(z1, . . . , zn; z)�(z2, . . . , zn; z1)]

+
1
n

E�(z2, . . . , zn; z1)2,

and the last term is bounded by M2

n .
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In the proofs, we will use the following inequality for random variables X , X ′

and Y :

E[XY − X ′Y ] ≤ ME|X − X ′| (4.1)

if −M ≤ Y ≤ M . The bounds on the second moments are already sums of terms of
the type “E[XY − WZ ]”, and we will find a way to use symmetry to change these
terms into the type “E[XY −X ′Y ]”, where X and X ′ will be quantities over similar
samples, and so E|X −X ′| will be bounded by a certain stability of the algorithm.

4.1. Leave-one-out (deleted) estimate

We have seen that EΦn = E[Iexp(z1, . . . , zn) − Iexp(z2, . . . , zn)] and thus the bias
decreases if and only if the expected errors are similar when learning on sim-
ilar (one additional point) samples. Moreover, intuitively, these errors have to
occur at the same places because otherwise evaluation of leave-one-out functions
�(z1, . . . , zi−1, zi+1, . . . , zn; z) will not tell us about �(z1, . . . , zn; z). This implies
that the L1 distance between the functions on similar (one additional point) sam-
ples should be small. This connection between L1 stability and the leave-one-out
estimate has been observed by Devroye and Wagner [4] and further studied in [6].
We now define this stability notion:

Definition 4.1. L1-Stability of an algorithm A is

β1(n) := ‖�(z1, . . . , zn; ·) − �(z2, . . . , zn; ·)‖L1(µ)

= Ez |�(z1, . . . , zn; z) − �(z2, . . . , zn; z)|.
The following theorem is proved in [4, 5] for classification algorithms. We give

a similar proof for general learning algorithms. The result shows that the second
moment (and therefore, both bias and variance) of the leave-one-out error estimate
is bounded by the L1 distance between loss functions on similar samples.

Theorem 4.2.

EΦ2
n ≤ M(2β1(n − 1) + 4β1(n)) +

M2

n
.

Proof. The first term in the decomposition of the second moment of EΦ2
n can be

bounded as follows:

E[�(z1, . . . , zn; z)�(z1, . . . , zn; z′) − �(z1, . . . , zn; z)�(z2, . . . , zn; z1)]

= E[�(z1, . . . , zn; z)�(z1, . . . , zn; z′) − �(z′, z2, . . . , zn; z)�(z2, . . . , zn; z′)]

= E[�(z1, . . . , zn; z)�(z1, . . . , zn; z′) − �(z2, . . . , zn; z)�(z1, . . . , zn; z′)]

+ E[�(z2, . . . , zn; z)�(z1, . . . , zn; z′) − �(z′, z2, . . . , zn; z)�(z1, . . . , zn; z′)]

+ E[�(z′, z2, . . . , zn; z)�(z1, . . . , zn; z′) − �(z′, z2, . . . , zn; z)�(z2, . . . , zn; z′)]

≤ 3Mβ1(n).
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The first equality holds by renaming z′ ↔ z1. In doing this, we are using the fact
that all the variables z1, . . . , zn, z, z′ are identically distributed and independent.
To obtain the inequality above, note that each of the three terms is bounded (using
(4.1)) by Mβ1(n) .

The second term in the decomposition is bounded similarly:

E[�(z2, . . . , zn; z1)�(z1, z3, . . . , zn; z2) − �(z1, . . . , zn; z)�(z2, . . . , zn; z1)]

= E[�(z′, z3, . . . , zn; z)�(z, z3, . . . , zn; z′) − �(z′, z2, . . . , zn; z)�(z2, . . . , zn; z′)]

= E[�(z′, z3, . . . , zn; z)�(z, z3, . . . , zn; z′) − �(z′, z2, . . . , zn; z)�(z, z3, . . . , zn; z′)]

+ E[�(z′, z2, . . . , zn; z)�(z, z3, . . . , zn; z′) − �(z′, z2, . . . , zn; z)�(z3, . . . , zn; z′)]

+ E[�(z′, z2, . . . , zn; z)�(z3, . . . , zn; z′) − �(z′, z2, . . . , zn; z)�(z2, . . . , zn; z′)]

≤ Mβ1(n) + 2Mβ1(n − 1).

The first equality follows by renaming z2 ↔ z′ as well as z1 ↔ z in the first term,
and z1 ↔ z′ in the second term. Finally, we bound the last term by M2/n to obtain
the result.

4.2. Empirical error (resubstitution) estimate: replacement case

Recall that the bias of the resubstitution estimate is the Average Stability, EΨn =
βbias. However, this is not enough to bound the second moment EΨ2

n for general
algorithms. Nevertheless, βbias measures the average performance of in-sample and
out-of-sample errors and this is inherently linked to the closeness of the resubsti-
tution (in-sample) estimate and the expected error (out-of-sample performance). It
turns out that it is possible to derive bounds on EΨ2

n by using a stronger version of
the Average Stability. The natural strengthening is requiring that not only the first,
but also the second moment of �(z1, . . . , zn; zi)− �(z1, . . . , z

′
i, . . . , zn; zi) is decaying

to 0. We follow [8] in calling this type of stability Cross-Validation (CV) Stability:

Definition 4.3. CV (Replacement) Stability of an algorithm A is

βcvr := E|�(z1, . . . , zn; z1) − �(z, z2, . . . , zn; z1)|,
where the expectation is over a draw of n + 1 points.

The following theorem was proven in [2]. Here, we give a version of the proof.

Theorem 4.4.

EΨ2
n ≤ 6Mβcvr(n) +

M2

n
.

Proof. The first term in the decomposition of EΨ2
n can be bounded as follows:

E[Ez�(z1, . . . , zn; z)Ez′�(z1, . . . , zn; z′) − Ez�(z1, . . . , zn; z)�(z1, . . . , zn; z2)]

= E[�(z1, z
′, z3, . . . , zn; z)�(z1, z

′, z3, . . . , zn; z2) − �(z1, . . . , zn; z)�(z1, . . . , zn; z2)]

= E[�(z1, z
′, z3, . . . , zn; z)�(z1, z

′, z3, . . . , zn; z2)
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− �(z1, z, z3, . . . , zn; z)�(z1, z
′, z3, . . . , zn; z2)]

+ E[�(z1, z, z3, . . . , zn; z)�(z1, z
′, z3, . . . , zn; z2)

− �(z1, . . . , zn; z)�(z1, z
′, z3, . . . , zn; z2)]

+ E[�(z1, . . . , zn; z)�(z1, z
′, z3, . . . , zn; z2) − �(z1, . . . , zn; z)�(z1, . . . , zn; z2)]

≤ 3Mβcvr(n).

The first equality follows from renaming z2 ↔ z′ in the first term. Each of the three
terms in the sum above is bounded by Mβcvr(n).

The second term in the decomposition of EΨ2
n can be bounded as follows:

E [�(z1, . . . , zn; z1)�(z1, . . . , zn; z2) − Ez�(z1, . . . , zn; z)�(z1, . . . , zn; z1)]

= E [�(z, z2, . . . , zn; z)�(z, z2, . . . , zn; z2) − �(z1, . . . , zn; z)�(z1, . . . , zn; z2)]

= E [�(z, z2, . . . , zn; z)�(z, z2, . . . , zn; z2) − �(z1, . . . , zn; z)�(z, z2, . . . , zn; z2)]

+ E [�(z1, . . . , zn; z)�(z, z2, . . . , zn; z2)

− �(z1, . . . , zn; z)�(z1, z, z3, . . . , zn; z2)]

+ E [�(z1, . . . , zn; z)�(z1, z, z3, . . . , zn; z2) − �(z1, . . . , zn; z)�(z1, . . . , zn; z2)]

≤ 3Mβcvr(n).

The first equality follows by renaming z1 ↔ z in the first term. Again, each of the
three terms in the sum above can be bounded by Mβcvr(n).

4.3. Empirical error (resubstitution) estimate

Mukherjee et al. [10] considered the “removal” version of the CV stability defined
in Sec. 4.3, the motivation being that the addition of a new point z′ complicates
the cross-validation nature of the stability. Another motivation is the fact that
�(z1, . . . , zn; z1)− �(z2, . . . , zn; z1) is non-negative for Empirical Risk Minimization.
It turns out that this “removal” version of the CV stability together with Expected
and Empirical Stabilities upper-bound EΨn. Following [10], we have the following
definition:

Definition 4.5. CV (Removal) Stability of an algorithm A is

βcv(n) := E|�(z1, . . . , zn; z1) − �(z2, . . . , zn; z1)|.
The following theorem was proven in [10]. Here, we give a version of the proof.

Theorem 4.6.

EΨ2
n ≤ M(βcv(n) + 4βexp(n) + 2βemp(n)) +

M2

n
.
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Proof. The first term in the decomposition of the second moment of EΨ2
n can be

bounded as follows:

E [�(z1, . . . , zn; z)�(z1, . . . , zn; z′) − �(z1, . . . , zn; z)�(z1, . . . , zn; z1)]

= E [�(z′, z2, . . . , zn; z)�(z′, z2, . . . , zn; z1) − �(z1, . . . , zn; z)�(z1, . . . , zn; z1)]

= E [�(z′, z2, . . . , zn; z)Ez1�(z
′, z2, . . . , zn; z1)

− �(z′, z2, . . . , zn; z)Ez1�(z2, . . . , zn; z1)]

+ E [Ez�(z′, z2, . . . , zn; z)�(z2, . . . , zn; z1) − Ez�(z2, . . . , zn; z)�(z2, . . . , zn; z1)]

+ E [Ez�(z2, . . . , zn; z)�(z2, . . . , zn; z1) − Ez�(z1, . . . , zn; z)�(z2, . . . , zn; z1)]

+ E [�(z1, . . . , zn; z)�(z2, . . . , zn; z1) − �(z1, . . . , zn; z)�(z1, . . . , zn; z1)]

≤ M(3βexp(n) + βcv(n)).

The first equality follows by renaming z1 ↔ z in the first term. In the sum above,
the first three terms are each bounded by Mβexp(n), while the last one is bounded
by Mβcv(n). Since the Expected (and Empirical) Error Stability has been defined
in Sec. 3.2 as expectation of a square, we used the fact that E|X | ≤ (EX2)1/2.

The second term in the decomposition of EΨ2
n is bounded as follows:

E

2
4

0
@ 1

n

nX
i=1

�(z1, . . . , zn; zi)

1
A

2

− Ez�(z1, . . . , zn; z)
1

n

nX
i=1

�(z1, . . . , zn; zi)

3
5

= E

"
�(z1, . . . , zn; z1)

1

n

nX
i=1

�(z1, . . . , zn; zi) − �(z1, . . . , zn; z)
1

n

nX
i=1

�(z1, . . . , zn; zi)

#

= E

"
�(z1, . . . , zn; z1)

1

n

nX
i=1

�(z1, . . . , zn; zi) − �(z2, . . . , zn; z1)
1

n

nX
i=1

�(z1, . . . , zn; zi)

#

+ E

"
�(z2, . . . , zn; z1)

1

n

nX
i=1

�(z1, . . . , zn; zi) − �(z2, . . . , zn; z)
1

n − 1

nX
i=2

�(z2, . . . , zn; zi)

#

+ E

"
�(z2, . . . , zn; z)

1

n − 1

nX
i=2

�(z2, . . . , zn; zi) − �(z2, . . . , zn; z)
1

n

nX
i=1

�(z1, . . . , zn; zi)

#

+ E

"
Ez�(z2, . . . , zn; z)

1

n

nX
i=1

�(z1, . . . , zn; zi) − Ez�(z1, . . . , zn; z)
1

n

nX
i=1

�(z1, . . . , zn; zi)

#

≤ M(βcv(n) + 2βemp(n) + βexp(n)).

The first equality follows by symmetry:

�(z1, . . . , zn; zk)
1
n

n∑
i=1

�(z1, . . . , zn; zi) = �(z1, . . . , zn; zm)
1
n

n∑
i=1

�(z1, . . . , zn; zi)

for all k, m. The first term in the sum above is bounded by Mβcv(n). The second
term is bounded by Mβemp(n) (and z1 ↔ z). The third term is also bounded by
Mβemp(n), and the last term by Mβexp(n).



October 14, 2005 14:37 WSPC/176-AA 00065

410 A. Rakhlin, S. Mukherjee & T. Poggio

4.4. Resubstitution estimate for the Empirical Risk Minimization

algorithm

It turns out that for the ERM algorithm, Ψn is “almost positive”. Intuitively, if one
minimizes the empirical error, then the expected error is likely to be larger than
the empirical estimate. Since Ψn is “almost positive”, EΨn → 0 implies |Ψn| P→ 0.
We now give a formal proof of this reasoning.

Recall, that an ERM algorithm searches in the function space F . Let

f∗ = arg min
f∈F

Ez�(f ; z),

the minimizer of the expected error.b Consider the shifted loss class

L′(F) = {�′(f ; ·) = �(f ; ·) − �(f∗; ·)|f ∈ F}
and note that Ez�

′(f ; z) ≥ 0 for any f ∈ F . Trivially, if �(z1, . . . , zn; ·) is an empirical
minimizer over the loss class L(F), then �′(f ; ·) = �(z1, . . . , zn; ·) − �(f∗; ·) is an
empirical minimizer over the shifted loss class L′(F)

Ez�
′(z1, . . . , zn; z) − 1

n

n∑
i=1

�′(z1, . . . , zn; zi)

= Ez�(z1, . . . , zn; z) − 1
n

n∑
i=1

�(z1, . . . , zn; zi) −
(

Ez�(f∗; z) − 1
n

n∑
i=1

�(f∗; zi)

)
.

Note that 1
n

∑n
i=1 �′(z1, . . . , zn; zi) ≤ 0 because L′(F) contains the zero function.

Therefore, the left-hand side is non-negative and the second term on the right-hand
side is small with high probability because f∗ is non-random. We have

P(Ψn(z1, . . . , zn) < −ε) ≤ P

(
Ez�(f∗; z) − 1

n

n∑
i=1

�(f∗; zi) < −ε

)
≤ e−2nε2/M2

.

Therefore,

E|Ψn| ≤ EΨn + 2ε + 2Me−2nε2/M2
.

If EΨn → 0, the right-hand side can be made arbitrarily small for large enough n,
thus proving E|Ψn| → 0. Clearly, EΨn → 0 whenever E|Ψn| → 0. Hence, we have
the following theorem:

Theorem 4.7. For Empirical Risk Minimization, βbias(n) → 0 is equivalent to
|Ψn| P→ 0.

Remark 4.8. With this approach, the rate of convergence of Iemp(z1, . . . , zn)
to Iexp(z1, . . . , zn) is limited by the rate of convergence of 1

n

∑n
i=1 �(f∗; zi) to

Ez�(f∗; z), which is O(n−1/2) without further assumptions.

bIf the minimizer does not exist, we consider ε-minimizer.
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For ERM, one can show that |Iemp(z1, . . . , zn) − Iemp(z2, . . . , zn)| ≤ M
n . Hence,

a “removal” version of Average Stability is closely related to Average Stability:

E (�(z1, . . . , zn; z1) − �(z2, . . . , zn; z1))

= E (Iemp(z1, . . . , zn) − Iexp(z2, . . . , zn))

= βbias(n − 1) + E (Iemp(z2, . . . , zn) − Iemp(z1, . . . , zn)) .

Thus, E (�(z1, . . . , zn; z1) − �(z2, . . . , zn; z1)) → 0 is also equivalent to |Ψn| P→ 0.
Furthermore, one can show that

�(z1, . . . , zn; z1) − �(z2, . . . , zn; z1) ≥ 0

for ERM (see [10]), and so CV (Removal) Stability, defined in Sec. 4.3, is equal to
the above “removal” version of Average Stability. Hence, βcv(n) → 0 is equivalent
to |Ψn| P→ 0.

Since Empirical Risk Minimization over a uniform Glivenko–Cantelli class
implies that |Ψn| P→ 0, it also implies that βbias(n) → 0 and βcv(n) → 0. Thus,
ERM over a UGC class is stable in these regards. By using techniques from the
Empirical Process Theory, it can be shown (see [3]) that for ERM over a smaller
family of classes, called Donsker classes, a much stronger stability in L1 norm (see
Definition 4.1) holds: β1(n) → 0. Donsker classes are classes of functions satisfying
the Central Limit Theorem, and for binary classes of function this is equivalent to
finiteness of the VC dimension.

5. Rates of Convergence

Previous sections focused on finding rather weak conditions for proving Ψn
P→ 0 and

Φn
P→ 0 via Markov’s inequality. With stronger notions of stability, it is possible to

use more sophisticated inequalities, which is the focus of this section.

5.1. Uniform stability

Uniform Stability (see Definition 2.1), is a very strong notion, and we would not
expect, in general, that β∞(n) → 0. Surprisingly, for Tikhonov Regularization
algorithms

A(z1, . . . , zn) = arg min
f∈F

1
n

n∑
i=1

�(f ; zi) + λ‖f‖2
K ,

it can be shown [2] that

β∞(n) ≤ L2κ2

2λn
,

where F is a reproducing kernel Hilbert space (RKHS) with kernel K, K(x, x) ≤
κ2 < ∞, ∀x ∈ X , and L is a Lipschitz constant relating norms between functions
f ∈ F to norms between loss functions � ∈ L(F).
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Clearly, β∞ dominates all stabilities discussed in the previous sections, and so
can be used to bound the mean and variance of the estimators. For this strong
stability, a more powerful concentration inequality can be used instead of Markov’s
inequality. McDiarmid’s bounded difference inequality states that if a function of
many random variables does not change much when one variable is changed, then
the function is almost a constant. This is exactly what we need to bound Ψn or Φn.

Theorem 5.1 (McDiarmid, [9]). Let ξ : Zn �→ R be a measurable function,

Γ = ξ(z1, . . . , zn), Γ′
i = ξ(z1, . . . , z

′
i, . . . , zn), where z1, . . . , zn, z′1, . . . , z

′
n are i.i.d.

random variables. If for all i,

sup
z1,...,zn,z′

1,...,z′
n

|Γ − Γ′
i| ≤ βn, (5.1)

then for any ε > 0,

P(|Γ − EΓ| ≥ ε) ≤ 2 exp
(−2ε2

nβ2
n

)
.

Bousquet and Elisseeff [2] applied this inequality to Γ = Ψn:

|Ψn(z1, . . . , zn) − Ψn(z1, . . . , z, . . . , zn)|
≤ |Iemp(z1, . . . , zn) − Iemp(z, z2, . . . , zn)|

+ |Iexp(z1, . . . , zn) − Iexp(z, z2, . . . , zn)|

≤ 1
n
|�(z1, . . . , zn; z1) − �(z, z2, . . . , zn; z)|

+
1
n

n∑
j=2

|�(z1, . . . , zn; zj) − �(z, z2, . . . , zn; zj)|

+ E
′
z|�(z1, . . . , zn; z′) − �(z, z2, . . . , zn; z′)|

≤ 2β∞(n) +
M

n
=: βn.

If β∞(n) = o(n−1/2), McDiarmid’s inequality shows that Ψn is exponentially
concentrated around EΨn, which is also small:

EΨn = βbias(n) ≤ β∞(n).

Therefore,

∀ ε > 0, P(Ψn ≥ β∞(n) + ε) ≤ 2 exp
(
− nε2

(2nβ∞(n) + M)2

)
.

Notice that for ERM, |Iemp(z1, . . . , zn) − Iemp(z, z2, . . . , zn)| ≤ M
n and so it is

enough to require βbias → 0 and |Iexp(z1, . . . , zn) − Iexp(z, z2, . . . , zn)| = o(n−1/2)
to get exponential bounds. The last requirement is strong, as it requires expected
errors on similar samples to be close for every sample. The next section deals with
“almost-everywhere” stabilities (see [8]), i.e. when a stability quantity is small for
most samples.
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5.2. Extending McDiarmid’s inequality

As one extreme, if we know that β∞(n) = o(n−1/2), we can use exponential
McDiarmid’s inequality. As the other extreme, if we only have information about
averages βemp and βexp, we are forced to use the second moment and Chebyshev’s
or Markov’s inequality. What happens in between these extremes? What if we know
more about the random variables Iemp(z1, . . . , zn)− Iemp(z, z2, . . . , zn)? One exam-
ple is the case when we know that these random variables are almost always small.
Unfortunately, assumptions of McDiarmid’s inequality are no longer satisfied, so
other ways of deriving exponential bounds are needed. This section elaborates on
this situation.

Assume that for a given βn, a measurable function ξ : Zn �→ [−M, M ] satisfies
the bounded difference condition (5.1) on a subset G ⊆ Zn of measure 1−δn, while

∀ (z1, . . . , zn) ∈ Ḡ, ∃ z′i ∈ Z
s.t. βn < |ξ(z1, . . . , zn)−ξ(z1, . . . , z

′
i, . . . , zn)| ≤ 2M,

where Ḡ is the complement of the subset G. Again, denote Γ = ξ(z1, . . . , zn),
Γ′

i = ξ(z1, . . . , z
′
i, . . . , zn). A simple application of Efron–Stein inequality shows that

var(Γ) ≤ 1
2
nE (ξ(z1, . . . , zn) − ξ(z, z2, . . . , zn))2

≤ 1
2
nE

[
I(z1,...,zn)∈G (ξ(z1, . . . , zn) − ξ(z, z2, . . . , zn))2

]
+

1
2
nE

[
I(z1,...,zn)∈Ḡ (ξ(z1, . . . , zn) − ξ(z, z2, . . . , zn))2

]
≤ 1

2
n(β2

n + 4M2δn). (5.2)

This leads to a polynomial bound on P(|Γ − EΓ| ≥ ε). Kutin and Niyogi [7, 8]
proved an inequality which is exponential when δn decays exponentially with n,
thus extending McDiarmid’s inequality to incorporate a small possibility of a large
jump of ξ. A more general version of their bound is the following:

Theorem 5.2 (Kutin and Niyogi [8]). Assume ξ : Zn �→ [−M, M ] satisfies
the bounded difference condition (5.1) on a set of measure 1 − δn and denote Γ =
ξ(z1, . . . , zn). Then, for any ε > 0,

P(|Γ − EΓ| ≥ ε) ≤ 2 exp
( −ε2

8nβ2
n

)
+

2Mnδn

βn
. (5.3)

Note that the bound tightens only if βn = o(n−1/2) and δn/βn = o(n−1).
Furthermore, the bound is exponential only if δn decays exponentially.c

While the variance bound in (5.2) is written in terms of the second moment, we
can use powerful moment inequalities, recently developed by Boucheron et al. [1],

cBy exponential rate, we mean decay o(exp(−nr)) for a fixed r > 0.
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to bound the qth moment of Γ. Moreover, q can be optimized to get the tightest
bounds.d

Define random variables V+ and V− as

V+ = E

[
n∑

i=1

(Γ − Γ′
i)

2IΓ≥Γ′
i
|z1, . . . , zn

]
, V− = E

[
n∑

i=1

(Γ − Γ′
i)

2IΓ<Γ′
i
|z1, . . . , zn

]
.

Theorem 5.3 (Boucheron et al. [1]). For ξ : Zn �→ R, Γ = ξ(z1, . . . , zn), and
any q ≥ 2,

‖(Γ − EΓ)+‖q ≤
√

2κq‖
√

V+‖q and ‖(Γ − EΓ)−‖q ≤
√

2κq‖
√

V+‖q,

where x+ = max(0, x) and κ ≈ 1.271 is a constant.

This result leads directly to the following theorem:

Theorem 5.4. Assume ξ : Zn �→ R satisfies the bounded difference condition (5.1)
on a set of measure 1 − δn, and denote Γ = ξ(z1, . . . , zn). Then for any q ≥ 2
and ε > 0,

P(Γ − EΓ > ε) ≤ (nq)q/2((2κ)q/2βq
n + (2M)qδn)

εq
,

where κ ≈ 1.271.

Proof.

EV
q/2
+ = E

{
IGV

q/2
+ + IḠV

q/2
+

} ≤ (nβ2
n)q/2 + (nq(2M)2)q/2δn.

By Theorem 5.3,

E(Γ − EΓ)q
+ ≤ (2κq)q/2

EV
q/2
+ ≤ (nβ2

nq2κ)q/2 + (n(2M)2)q/2δn.

Hence,

P(Γ − EΓ > ε) ≤ E(Γ − EΓ)q
+

εq
≤ (nq)q/2((2κ)q/2βq

n + (2M)qδn)
εq

.

Note that the bound of Theorem 5.4 holds for any q ≥ 2. To clarify the
asymptotic behavior of the bound, assume βn = n−γ for some γ > 1/2, and let
q = ε2β−2

n n−2γ+η = ε2nη for some η to be chosen later, 2γ − 1 > η > 0. Assume
δn = exp(n−θ) for some θ > 0. The bound of Theorem 5.4 becomes

P(Γ − EΓ > ε) ≤ (nq)q/2((2κ)q/2βq
n + (2M)qδn)

εq

≤
(

2κnqβ2
n

ε2

)q/2

+ δn

(
4M2nq

ε2

)q/2

≤ (2κn1+η−2γ
) ε2

2 nη

+
(
4M2n1+η

) ε2
2 nη

exp(−nθ)

dThanks to Gábor Lugosi for suggesting this method.
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≤ exp
(

(1 + (1 + η − 2γ) log n)nη ε2

2

)

+ exp
(

(2 log(2M) + (1 + η) log n)nη ε2

2
− nθ

)
. (5.4)

Since 1 + η − 2γ < 0, the first term is decaying exponentially with n. We can now
choose η < min(θ, 2γ−1) for the second term to decay exponentially. In particular,
let us compare our result to the result of Theorem 5.2. With δn = exp(n−θ) the
bound in Eq. (5.3) becomes

P(Γ − EΓ > ε) ≤ exp
(
−ε2

8
n2γ−1

)
+ exp

(
(log M + (γ + 1) log n) − nθ

)
. (5.5)

Depending on whether θ < 2γ − 1 or not, the first or second term dominates
convergence to zero, which coincides exactly with the asymptotic behavior of our
bound. In fact, one can verify that the terms in the exponents of bounds (5.4) and
(5.5) have the same order.

We have therefore recovered the resulte of Theorem 5.2 for the interesting case
δn = exp(−nθ) by using moment inequality of Boucheron et al. [1]. Note that the
result of Theorem 5.4 is very general and different ways of picking q might prove
useful. For instance, if δn = 0, i.e. the bounded difference condition (5.1) holds, we
can choose q = ε2

4nβ2
n

to recover McDiarmid’s inequality.
Having proven extension to McDiarmid’s inequality, we can use it in a straight-

forward way to derive bounds on P(|Ψn| > ε) and P(|Φn| > ε) when expected and
empirical quantities do not change “most of the time”, when compared on similar
samples (see [8] for examples).

6. Summary and Open Problems

We have shown how stability of algorithms provides an alternative to classical Sta-
tistical Learning Theory approach for controlling the behavior of empirical and
leave-one-out estimates. The results presented are by no means a complete picture:
one can come up with other notions of algorithmic stability, suited for the prob-
lem. Our goal was to present some results in a common framework and delineate
important techniques for proving bounds.

One important (and largely unexplored) area of further research is looking at
existing algorithms and proving bounds on their stabilities. For instance, work of
Caponnetto and Rakhlin [3] showed that Empirical Risk Minimization (over certain
classes) is L1-stable. It might turn out that other algorithms are stable in this (or
even stronger) sense when considered over restricted function classes, which are
nevertheless used in practice. Can these results lead to faster learning rates for
algorithms?

eThis gives an answer to the open question 6.2 in [7].
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Adding a regularization term for ERM leads to an extremely stable Tikhonov
Regularization algorithm. How can regularization be used to stabilize other algo-
rithms, and how does this affect the bias-variance trade-off of fitting the data versus
having a simple solution?

Though the results presented in this paper are theoretical, there is a potential
for estimating stability in practice. Can a useful quantity be computed by running
the algorithm many times to determine its stability? Can this quantity serve as a
measure of the performace of the algorithm?
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